If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2-16t+9=0
a = -16; b = -16; c = +9;
Δ = b2-4ac
Δ = -162-4·(-16)·9
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{13}}{2*-16}=\frac{16-8\sqrt{13}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{13}}{2*-16}=\frac{16+8\sqrt{13}}{-32} $
| -19+6(n-5)=5 | | -22=11(2c | | 3(y-4)=(-2)(y+6) | | -7+2v=-15 | | -46=8-9v | | .66(3-c)=8+.16c | | 22+8x-11x=-8 | | 2/3(3-c)=8+1/6c | | 82-y=260 | | 70/x^2=26 | | 2.3x+(0.75x-3.5)=7.5 | | 3x^+10x=8 | | 2+24=-2c-12 | | 6(k+1.2)=2k+6 | | 70/x=26 | | x^+4×+2=0 | | 4x+3x^2=95 | | 2/3(3q+6)=8+2q | | –1.1x–4=0.8 | | -1/2=-7/4u+8/3 | | (y)+(90)+(y-30)=180 | | 4/5v-7=9 | | 2a^-7a+3=0 | | 2y=-1/2y | | 1k^2-10k+20=0 | | -x=-4-3x+6 | | K^2-10k+20=0 | | F(x-6)=3^2+3x-6 | | 2y=1-2y | | 3n+8/5=4 | | 10a-2(a+5)=14 | | 4x+(-4)=10 |